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Peaple’s Republic of China 
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Abstract. In this paper. using the effective-mass approximation and the variational mefhcd the 
ground-state and the first-excited-state energy shifts of a polaron in a p0131~rystai slab, due to 
the interactions of the electron with the BO and so phonons, are calculated self-consistently. Our 
results are different from the results obtained by Gu el d. 

1. Introduction 

There has been a considerable amount of work [Z-IO] on the properties of the electron in a 
quantum well in recent years. Licari and Evrard [l] derived a Hamiltonian for the electron- 
phonon interaction in a slab, which included the interactions of electron with confined bulk 
longitudinal optical (BO) phonons and with surface longitudinal optical (so) phonons. Gu et 
al [2] applied the Hamiltonian of Licari and Evrard and the variational method to calculate 
the ground-state and the first-excited-state energy shifts of a polaron in a slab due to the 
interactions of the electron with the BO and SO phonons. However, Gu et ai diagonalized 
approximately the polaron Hamiltonian instead of minimizing the energy to determine the 
variation parameters. Thus the variation parameters obtained by them are dependent on 
the electron space coordinate 2. In this paper, using a similar method to that of Gu et a1 
[Z] and minimizing the energies to determine the variation parameters we calculate self- 
consistently the ground-state and the first-excited-state energy shifts due to the interactions 
of the electron with the BO and so phonons. Our results are different from their results. We 
point out that setting the linear term of the phonon operators in the effective Hamiltonian 
to zero, i.e. diagonalizing approximately the polaron Hamiltonian to determine the variation 
parameters as applied by Gu et nl [2], is not suitable for the quasi-two-dimensional quantum 
well system. 

2. The Hamiltonian 

We assume that a slab with thickness 2d is made of a polar crystal and is surrounded by 
a vacuum (figure 1). The linear scale of the surface of the slab is taken to be much larger 
than U .  If the iso’uopic effectivemass approximation is adopted, the Hamiltonian of the 
system, consisting of an electron, the confined BO phonons and the so phonons, may be 
written as [2] 

H = He + Hph + H-BO f Heso ( 10) 
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where 
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In the above equations, p is the position vector of the electron on the X-Y plane and m' is 
the band mass of the electron; HBO and HSO are the Hamiltonians of the BO phonons and the 
SO phonons, respectively; a$,,(k) and am,,(k) are the creation and annihilation operators, 
respectively, of the BO phonons with the frequency om and the wavevector (k, mrr/2d) (k 
is the projection on the X-Y plane of the wavevector); b,f(q) and b,(q) are the creation 
and annihilation operators, respectively, of the SO phonons with the frequency and 
the wavevector q .  The subscript p is the parity with respect to the mirror symmetry of the 
plane for 2 = 0, and m is the quantum number of the wavevector of the BO phonons in the 
Z direction. For even parity (represented by the + sign), m is odd while, for add parity 
(represented by the - sign), m is even. We take N as the slab thickness in units of the 
lattice constant a,  namely Nu = 2d.  Being limited by the Brillouin-zone boundary, m may 
be any integer within the range 1 < m < N / 2 .  

t '  

Figure 1. Geomevy of the polar.crystal slab 

The phonon frequencies OLO and os,,, can be expressed in terms of the transverse- 
optical (m)-phonon frequency wro by 

( 2 4  

(2b) 

2 - 2  
WLO - *O(~O/%) 

w:~.+  =do { [ ( C O  + 1) F (€0 - 1) exp(-2qd)l/t(~, + 1) T (6- - I )  exp(-2qd)ll 

where €0 and E, are the static and the optical dielectric constants, respectively, 
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Heeo and H,SO in equation (1) are the interaction Hamiltonians of the electron with 
the BO phonons and with the SO phonons, respectively and they are taken directly from 111: 

(sinhh2qd))l" exp(-qd)(C* exp(-iq . p) 
H e s o  = 

9 

x IG+(q, z)bz(q)  + G-(q. ~)b?(q ) l+  HCI 

where A and V are the area and the volume, respectively, of the slab, and 

(3b) 

(4b) 

where fm,,,(k) and g p ( q )  and their conjugate terms f&,(k) and g:(q) are the variation 
parameters which will subsequently be determined by minimizing the energy. Then H in 
equation (1) can be transformed into 



3368 Tian-Qua Lu and  Jin-Song Li 

where Kl, is the projection of the momentum of the polaron on the X-Y plane and is a 
conservation quantity. U! and respectively, are defined by the following equations: 

h2u:/2m* = h w m  h2u:,,/2m* = hw,,.,. 

In the derivation of equation (5) we always keep the variation parameters independent 
of the electron space coordinate. 

3. The energies 

It is necessary to point out that we are interested only in the slow electron, i.e. we can set 
K I I  = 0. Here we pay attention only to the low-temperature limitation state where there are 
no real phonons in the system. For 31 represented by equation (5) the trial wavefunction of 
a polaron (Kli = 0) in the slab may be chosen as 

where 1 is a positive integer ( I  4 I < N = Zd/a); 10) is the vacuum state of the phonons, 
i.e., 

am,,(k)lO) = 0 bp(q)lOj = 0, 
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Considering the symmetry and the slow electron (setting Kll = 0) we have [2] 

C4Igp(4)12=O. 
‘ I * P  

According to the variation method, from 

a($~l’M$t)/~f, ’ ,p(k) S ( $ d W $ ~ ) / ~ f m . p ( k )  = ~ ( $ d ’ M $ ~ ) / a g ~ ( q )  

= W/I’HI@/)/&=,(d = 0 (7) 

and inserting equation (5) and equation (6) into equation (7), we can obtain 

fm,+(k) = -~*~m,+(k) / f (~’ /2m*)(k~ + $11 
fi,+(k) = -sw,,+(k)/t(~’/2m*)(k2 + U?)I 

g+(q) = - (c*v+(q)[sinhQqd)/ql”2ex~(-qd)} /[@2/2m*)(q2 + .:,+)I 

&(q)  = - (cv+(q)Isinh(2qd)/qI”Zex~(-qd)] /[tfiz/2m*)(q2 +.:,+)I 

fm.-(k) = f , ,-(W = g-(q)  = g t k )  = o  
where 

W,,+(k) = [8l2/m(4l2 - m ’ ) ~ ]  sin(mx/2)[kz + ( m ~ / Z d ) ~ ] - ‘ ~  

V + k )  = { I(l~/d)’ tanh(qd)l/qd[q* + ( l ~ / d ) ~ l }  

( 8 4  

(8b) 

(8c) 

(84 

(Se) 

( 9 4  

+ 1) - (cm - 1) exp(-2qd)ll 

x ([km + 1) - (6, - 1) exp(-2qd)l/[(~0 + 1) - (€0 - 1)ex~(-2qd)Il‘’~. 
(9b) 

These variation parameters are independent of the Z coordinate of the electron. In [2] these 
parameters were determined by diagonalizing approximately the polaron Hamiltonian ?-l and 
they are all functions of the 2 coordinate of the electron. From the derivation of equation 
(5) it can be found that these parameters must be independent of the 2 coordinate of the 
electron. 

Using equations (3, (6) and (%)-(Se) we can obtain the energy of a polaron in the 
slab: 

E = E i + A E  ( 1 Oa) 

where El is the energy for the electron motion along the 2 direction confined in an infinite 
square-we11 potential: 

E, = irZh212/2m*(Na)Z. ( lob)  

A,!? is the total energy shift: 

Ai7 = E: + E:. (1 OC) 
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E! is the energy shift of an electron due to the interaction of the electron with the confined 
BO phonons: 
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where 

.Z a = m e ( 1 1 ~ ~  - 1 feo)lhzu~. 

E: is the energy shift of an electron due to the interaction of the electron with the so 
phonons: 

E," = - ~ ~ F I ~ ~ E ~ / ~ ~ ~ ~ N ~ K , I  ( 104 

where 

1 

(E, + I) - (E, - 1) exp(-x) 
(60 + I )  - (EO - I)  exp(-x) 

In equation (IOf) we have set x = 2qd. 

4. Results and discussion 

We take a GaAs slab as an example to present our numerical results. The characteristic 
parameters in our numerical calculations are as follows: to = 12.83, E, = 10.9, 
a = 0.5654 nm. 'or0 = 33.83 meV and ma = 0.0657m. 

Using equation (lad) we calculate the energy shift E," due to the interaction of an 
electron with the BO phonons for the ground state (1 = 1) and the first excited state ( I  = 2). 
Figure 2 shows the changes in E," with the variation in the slab thickness N .  For a very 
thin slab (N < 22), E," rapidly decreases with increase in N .  When N = 22, E," is a 
minimum. When N > 22, E," increases with increase in N .  This result is different from 
that obtained by Gu et al [2]. 

Using equation (1Oe) we calculate the energy shift E," due to the interaction of an 
electron with the so phonons for the ground state ( I  = I )  and the first excited state (I = 2). 
Figure 3 shows the changes in E: with the variation in the slab thickness N .  For a thin 
slab the contribution of E," is dominant compared with the total energy shifi A E .  When 
N > 200, E is very small compared with E,". This result is also different from that obtained 
by Gu et al [21. 

In threedimensional polaron questions the variation parameters are determined by 
minimizing the energy. This method is consistent with the method diagonalizing 
approximately the polaron Hamiltonian, i.e. setting the linear term of the phonon operators 
in  the effective Hamiltonian to zero since the variation parameters obtained by the two 
methods are the same and independent of the space coordinate of the electron [l l] .  In 
this paper we minimize the energies to determine the variation parameters (independent on 
the Z coordinate of the electron). This is a standard method [l l] .  Gu et al [2] did not 
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Figure 2. The energy shift E: versus the slab thickness N. 
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Figure 3. The energy shift E: versus the slab thickness N. 

fully take into account the difference between the quasi-two-dimensional system and the 
three-dimensional system. There is no translation symmetry in the Z direction (normal to 
the slab) for the quasi-two-dimensional quantum well system. The unitary transformation 
U, cannot be used to make the Hamiltonian in equation (la) eliminate the Z coordinate 
of the electron. Taking note of the effective Hamiltonian in equation (5) which contains 
the 2 coordinate of the electron and also the operator az/azz, we can understand that 
the variation parameters must be independent of the 2 coordinate of the electron. In [Z] 
the variation parameters obtained by Gu et al were functions of the 2 coordinate of the 
electrons; thus their results are inaccurate. In this paper, by minimizing the energy to 
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determine the variation parameters (independent of the Z coordinate of the electron), we 
calculate the ground-state and the first-excited-state energy shifts of a polaron in a polar- 
crystal slab due to the interactions of the electron with Bo and so phonons. Our results are 
accurate compared with the results of [Z]. This implies that the method employed in [Z], i.e. 
diagonalizing approximately the polaron Hamiltonian to determine the variation parameters, 
is not suitable for the quasi-two-dimensional quantum well system. 

Tinn-Quan Lu and Jin-song Li 
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